Targeted Application to Reduce Pesticide Rates

Ken Giles
David Slaughter

Biological & Agricultural Engineering Department University of California, Davis USA

California Department of Pesticide Regulation VOC Symposium

Sacramento, CA 23 May 2007

Three critical aspects of ag spraying

Successful changes in practices address all three

Agrochemical application in California

Proximity to sensitive areas, either natural or man-made is common.

Tools to reduce application rates:

- \Rightarrow Improved nozzles
 - * Droplet size management
 - * Better targeting

- \Rightarrow Adjuvants
 - * Reduce liquid rates
 - * Achieve small droplet quality deposition and efficacy with larger droplets

- \Rightarrow Targeted application
 - * Sensors and controllers
 - * Reduce non-target deposition

Nozzle Technology

- Trend toward larger droplets
- Using air induction
- Manipulating droplet velocities

Air induction nozzle

- A passive air flow
- Reduces small droplets
- Can create bubbles in droplets

Air induction nozzle

water

Air induction nozzle

water + 0.5% surfactant

Droplet deposition

Water
0.508 mm orifice
5 cm distance
70 kPa
100 ms pulse

Poor spread

Water + surfactant
0.508 mm orifice
5 cm distance
70 kPa
100 ms pulse

Splash

Water + surfactant + polymer

0.508 mm orifice5 cm distance70 kPa100 ms pulse

Good spread

Splash inhibited

Effect of adjuvant on deposition

Silicone surfactant 50 gallons / acre

No adjuvant 100 gal / acre

Air blast sprayer AI nozzles @ 160 gals/ac W/ alternate adjuvant

Miller et al. (2003) concluded: "Most of the spray movement out of the tree canopy was in the spaces between trees..."

"One way to reduce drift may be to turn off the spray between tree crowns...

Spray deposit partitioning in orchards

<u>Author</u>	Condition	Ground	<u>Target</u>	<u>Drift</u>
Seiber	Dormant	25 – 45%	-	-
Cross	Both	43 - 63%	-	16%
Vercruysse	Both	-	56 – 68%	-
Pergher	In season	-	37 – 62%	_
Fox	"Sparse"	57%	-	-
Miller	In season	22%	57%	4.6 (16%)

Ultrasonic measurement of trees for control of spray sections.

Savings depends on orchard age, size, gaps, etc.

Some trials have shown 50 - 70 % savings.

Field test – dormant plums Chico

Air-O-Fan 2D40 engine-driven sprayer "Smart Spray" ultrasonic control system (retrofit)

Field test – dormant walnuts Davis

Nozzle configuration was "center-weighted" spray

Field test – dormant almonds Ceres

Durand-Wayland AF500 Smart Sprayer

Nozzle configuration was "center-weighted" spray

0.5 kg/ha Lorsban (chlopyrifos)

Deposition sampling - almonds

Performance results

3 crops, 3 chemicals, 3 sprayers, 3 locations, 3 operators ...

Use of system had no significant effect on target deposition

- Plum orchard
 - 15% reduction in a.i. rate
 - 5% less ground deposit
- Walnut orchard
 - 45% reduction in a.i. rate
 - 58% less ground deposit
- Almond orchard -
 - 22% reduction in a.i. rate
 - 71% less ground deposit

Based on these results, a run-off experiment was conducted in a 40 acre prune orchard in Biggs.

Field test – Prunes Biggs

Durand-Wayland AF500 Smart Sprayer

Measurements:

Spray savings Ground deposit Runoff

Results from "Smart" Spraying Spray Savings: 39% Ground Deposit: - 54% Diazinon in Runoff: - 44%

A typical target scene within the row

A typical target scene within the row

Process for image analysis

Replacing chemical selectivity with spatial selectivity

The concept..

"Leaf-specific" agriculture

Process for spatially selective application of nonselective herbicide

Micro boom and micro boom sections of micro nozzles

One micro boom section per cell

Fast valves for flow control

Micro-nozzles for dosing

Target plants

